Package: PerfMeas 1.2.5
PerfMeas: Performance Measures for Ranking and Classification Tasks
Implementation of different performance measures for classification and ranking tasks including Area Under the Receiving Characteristic Curve (AUROC) and Area Under the Precision Recall Curve (AUPRC), precision at a given recall, F-score for single and multiple classes.
Authors:
PerfMeas_1.2.5.tar.gz
PerfMeas_1.2.5.zip(r-4.5)PerfMeas_1.2.5.zip(r-4.4)PerfMeas_1.2.5.zip(r-4.3)
PerfMeas_1.2.5.tgz(r-4.4-x86_64)PerfMeas_1.2.5.tgz(r-4.4-arm64)PerfMeas_1.2.5.tgz(r-4.3-x86_64)PerfMeas_1.2.5.tgz(r-4.3-arm64)
PerfMeas_1.2.5.tar.gz(r-4.5-noble)PerfMeas_1.2.5.tar.gz(r-4.4-noble)
PerfMeas_1.2.5.tgz(r-4.4-emscripten)PerfMeas_1.2.5.tgz(r-4.3-emscripten)
PerfMeas.pdf |PerfMeas.html✨
PerfMeas/json (API)
# Install 'PerfMeas' in R: |
install.packages('PerfMeas', repos = c('https://gvalentini58.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 2 years agofrom:038339e005. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 22 2024 |
R-4.5-win-x86_64 | OK | Nov 22 2024 |
R-4.5-linux-x86_64 | OK | Nov 22 2024 |
R-4.4-win-x86_64 | OK | Nov 22 2024 |
R-4.4-mac-x86_64 | OK | Nov 22 2024 |
R-4.4-mac-aarch64 | OK | Nov 22 2024 |
R-4.3-win-x86_64 | OK | Nov 22 2024 |
R-4.3-mac-x86_64 | OK | Nov 22 2024 |
R-4.3-mac-aarch64 | OK | Nov 22 2024 |
Exports:AUC.n.singleAUC.n.single.over.classesAUC.singleAUC.single.over.classesAUPRCcompute.mean.AUC.single.over.classescompute.mean.F.measure.single.over.classesF.measure.singleF.measure.single.over.classesget.all.nodes.by.depthperformance.curves.plotprecision.at.all.recall.levelsprecision.at.multiple.recall.levelprecision.at.multiple.recall.level.over.classesprecision.at.recall.levelprecision.at.recall.level.over.classesprecision.recall.curves.plottrap.rule.integral
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Performance Measures for Ranking and Classification Tasks | PerfMeas-package PerfMeas |
AUC measures | AUC.measures AUC.n.single AUC.n.single.over.classes AUC.single AUC.single.over.classes compute.mean.AUC.single.over.classes |
Area Under the Precision Recall Curve | AUPRC trap.rule.integral |
Datasets used in the examples of the package | example.data PrecRec Scores T |
F-measures | compute.mean.F.measure.single.over.classes F.measure.single F.measure.single.over.classes F.measures |
Getting nodes by their depth | get.all.nodes.by.depth |
Graphics function to plot precision/recall or f.score/recall curves | performance.curves.plot precision.recall.curves.plot |
Precision at a given recall level measures | precision.at.all.recall.levels precision.at.multiple.recall.level precision.at.multiple.recall.level.over.classes precision.at.recall.level precision.at.recall.level.over.classes PXR |