Package: PerfMeas 1.2.5

PerfMeas: Performance Measures for Ranking and Classification Tasks

Implementation of different performance measures for classification and ranking tasks including Area Under the Receiving Characteristic Curve (AUROC) and Area Under the Precision Recall Curve (AUPRC), precision at a given recall, F-score for single and multiple classes.

Authors:Giorgio Valentini [aut, cre]

PerfMeas_1.2.5.tar.gz
PerfMeas_1.2.5.zip(r-4.5)PerfMeas_1.2.5.zip(r-4.4)PerfMeas_1.2.5.zip(r-4.3)
PerfMeas_1.2.5.tgz(r-4.5-x86_64)PerfMeas_1.2.5.tgz(r-4.5-arm64)PerfMeas_1.2.5.tgz(r-4.4-x86_64)PerfMeas_1.2.5.tgz(r-4.4-arm64)PerfMeas_1.2.5.tgz(r-4.3-x86_64)PerfMeas_1.2.5.tgz(r-4.3-arm64)
PerfMeas_1.2.5.tar.gz(r-4.5-noble)PerfMeas_1.2.5.tar.gz(r-4.4-noble)
PerfMeas_1.2.5.tgz(r-4.4-emscripten)PerfMeas_1.2.5.tgz(r-4.3-emscripten)
PerfMeas.pdf |PerfMeas.html
PerfMeas/json (API)

# Install 'PerfMeas' in R:
install.packages('PerfMeas', repos = c('https://gvalentini58.r-universe.dev', 'https://cloud.r-project.org'))
Datasets:
  • PrecRec - Datasets used in the examples of the package
  • Scores - Datasets used in the examples of the package
  • T - Datasets used in the examples of the package

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.18 score 1 packages 25 scripts 326 downloads 2 mentions 18 exports 7 dependencies

Last updated 2 years agofrom:038339e005. Checks:11 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 20 2025
R-4.5-win-x86_64OKFeb 20 2025
R-4.5-mac-x86_64OKFeb 20 2025
R-4.5-mac-aarch64OKFeb 20 2025
R-4.5-linux-x86_64OKFeb 20 2025
R-4.4-win-x86_64OKFeb 20 2025
R-4.4-mac-x86_64OKFeb 20 2025
R-4.4-mac-aarch64OKFeb 20 2025
R-4.3-win-x86_64OKFeb 20 2025
R-4.3-mac-x86_64OKFeb 20 2025
R-4.3-mac-aarch64OKFeb 20 2025

Exports:AUC.n.singleAUC.n.single.over.classesAUC.singleAUC.single.over.classesAUPRCcompute.mean.AUC.single.over.classescompute.mean.F.measure.single.over.classesF.measure.singleF.measure.single.over.classesget.all.nodes.by.depthperformance.curves.plotprecision.at.all.recall.levelsprecision.at.multiple.recall.levelprecision.at.multiple.recall.level.over.classesprecision.at.recall.levelprecision.at.recall.level.over.classesprecision.recall.curves.plottrap.rule.integral

Dependencies:BHBiocGenericsgenericsgraphlimmaRBGLstatmod

Readme and manuals

Help Manual

Help pageTopics
Performance Measures for Ranking and Classification TasksPerfMeas-package PerfMeas
AUC measuresAUC.measures AUC.n.single AUC.n.single.over.classes AUC.single AUC.single.over.classes compute.mean.AUC.single.over.classes
Area Under the Precision Recall CurveAUPRC trap.rule.integral
Datasets used in the examples of the packageexample.data PrecRec Scores T
F-measurescompute.mean.F.measure.single.over.classes F.measure.single F.measure.single.over.classes F.measures
Getting nodes by their depthget.all.nodes.by.depth
Graphics function to plot precision/recall or f.score/recall curvesperformance.curves.plot precision.recall.curves.plot
Precision at a given recall level measuresprecision.at.all.recall.levels precision.at.multiple.recall.level precision.at.multiple.recall.level.over.classes precision.at.recall.level precision.at.recall.level.over.classes PXR