Package: PerfMeas 1.2.5

PerfMeas: Performance Measures for Ranking and Classification Tasks

Implementation of different performance measures for classification and ranking tasks including Area Under the Receiving Characteristic Curve (AUROC) and Area Under the Precision Recall Curve (AUPRC), precision at a given recall, F-score for single and multiple classes.

Authors:Giorgio Valentini [aut, cre]

PerfMeas_1.2.5.tar.gz
PerfMeas_1.2.5.zip(r-4.5)PerfMeas_1.2.5.zip(r-4.4)PerfMeas_1.2.5.zip(r-4.3)
PerfMeas_1.2.5.tgz(r-4.4-x86_64)PerfMeas_1.2.5.tgz(r-4.4-arm64)PerfMeas_1.2.5.tgz(r-4.3-x86_64)PerfMeas_1.2.5.tgz(r-4.3-arm64)
PerfMeas_1.2.5.tar.gz(r-4.5-noble)PerfMeas_1.2.5.tar.gz(r-4.4-noble)
PerfMeas_1.2.5.tgz(r-4.4-emscripten)PerfMeas_1.2.5.tgz(r-4.3-emscripten)
PerfMeas.pdf |PerfMeas.html
PerfMeas/json (API)

# Install 'PerfMeas' in R:
install.packages('PerfMeas', repos = c('https://gvalentini58.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • PrecRec - Datasets used in the examples of the package
  • Scores - Datasets used in the examples of the package
  • T - Datasets used in the examples of the package

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.18 score 1 packages 25 scripts 331 downloads 2 mentions 18 exports 7 dependencies

Last updated 2 years agofrom:038339e005. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 22 2024
R-4.5-win-x86_64OKNov 22 2024
R-4.5-linux-x86_64OKNov 22 2024
R-4.4-win-x86_64OKNov 22 2024
R-4.4-mac-x86_64OKNov 22 2024
R-4.4-mac-aarch64OKNov 22 2024
R-4.3-win-x86_64OKNov 22 2024
R-4.3-mac-x86_64OKNov 22 2024
R-4.3-mac-aarch64OKNov 22 2024

Exports:AUC.n.singleAUC.n.single.over.classesAUC.singleAUC.single.over.classesAUPRCcompute.mean.AUC.single.over.classescompute.mean.F.measure.single.over.classesF.measure.singleF.measure.single.over.classesget.all.nodes.by.depthperformance.curves.plotprecision.at.all.recall.levelsprecision.at.multiple.recall.levelprecision.at.multiple.recall.level.over.classesprecision.at.recall.levelprecision.at.recall.level.over.classesprecision.recall.curves.plottrap.rule.integral

Dependencies:BHBiocGenericsgenericsgraphlimmaRBGLstatmod

Readme and manuals

Help Manual

Help pageTopics
Performance Measures for Ranking and Classification TasksPerfMeas-package PerfMeas
AUC measuresAUC.measures AUC.n.single AUC.n.single.over.classes AUC.single AUC.single.over.classes compute.mean.AUC.single.over.classes
Area Under the Precision Recall CurveAUPRC trap.rule.integral
Datasets used in the examples of the packageexample.data PrecRec Scores T
F-measurescompute.mean.F.measure.single.over.classes F.measure.single F.measure.single.over.classes F.measures
Getting nodes by their depthget.all.nodes.by.depth
Graphics function to plot precision/recall or f.score/recall curvesperformance.curves.plot precision.recall.curves.plot
Precision at a given recall level measuresprecision.at.all.recall.levels precision.at.multiple.recall.level precision.at.multiple.recall.level.over.classes precision.at.recall.level precision.at.recall.level.over.classes PXR